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LETTER TO THE EDITOR 

Domain wall solutions of Kdv like equations with higher order 
nonlinearity 

Bishwajyoti Dey 
Institute of Physics, Bhubaneswar-751005, India 

Received 21 August 1985 

Abstract. We consider certain nonlinear partial differential equations which are Korteweg- 
de Vries (KdV) like equations with higher order nonlinearity. We show that these have got 
kink (domain wall) solutions for particular values of the coefficients of the nonlinear terms. 
The solutions are compared with the standard known solution of the A $ 2 n  field theories. 
Some conservation laws for these system of equations are also given. 

We consider four forms of nonlinear partial differential equations. 
(i) The first form 

U, + a( 1 + bu)uu, + 8uxxx = 0, a, 6 > 0  ( l a )  

can be derived from the Lagrangian density 

2 =+&e, +&a(  1 +fbe,)e', -;a$* 
where 6, = U and CC, = e,,. This equation is like the combined Kdv equation, which for 
b = 0 reduces to the usual Kdv equation (Novikov er a1 1984). The subscripts denote 
partial derivatives. 

(ii) The second form 

[ a ( l +  b u ) ~  - ~ ] u , + S U , , ,  = O ,  via, 771s 0 (2a)  

can be derived from 

2 = [ [ b ~ ( i + f b e ~ ) e , - f ~ ] e ~ - t s $ * .  

This equation is comparable with the static case above ( l a ) ,  except for an additional 
term vu,. 

(i i i)  The third form 

U, + bu2u, - SU,,, = 0, b, 6 > 0, ( 3 a )  

is the modified Kdv equation (Novikov et al 1984) with the exception of the sign of 
the highest derivative term. This equation can be derived from 

9 = fe,e, +$be', + &*. 

u f + a ( 1 + b u 2 ) u 2 u , + S u , , ,  =0 ,  a , 6 > 0  

(36)  

(iv) The fourth form is 
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(4a)  
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which for b = 0 becomes the modified Kdv equation. It can be derived from 

a=fe,e, +&e:(;+fbe’,) -fs$’. ( 4 b )  

In order to look for travelling solitary wave solutions we make the simple transfor- 
mation 

t = x - c t  ( 5 )  
where c is the propagation velocity of the solitary waves. With this transformation 
( l a )  reduces to the stationary equation 

-cue + a( 1 + bU)uu, + S U , ~  = 0, 

- icu2  +4au3 + &abu4+i8ui = k,  U + k2 

( 6 a )  

which, after integrating twice WRT 6, can be rewritten as 

( 6 6 )  

where k ,  and k, are constants of integration. Similarly (2a)  reduces to 

-;VU’ ++au3 + &abu4 + ~ S U ‘ ,  = k ,  U + k2, 

~ c u ’ - & ~ u ~ + ; ~ u : =  k , u +  k, (8) 

- ; C U ~ + & U U ~ + & U ~ U ~ + . ~ ~ U ~ =  k,u + k2. ( 9 )  

( 7 )  

equation ( 3 a )  reduces to 

and finally ( 4 a )  reduces to 

Integration of ( 6 b ) ,  ( 7 ) ,  (8) and ( 9 )  gives, respectively, the domain wall (kink) 
solutions of ( l a ) - ( 4 a ) .  Thus the solutions of ( l a )  are given by 

u(x ,  t )  = ( 3 c / a ) { l  *tanh[(~/8)”~[/2]1 (10 )  

for k, = k2 = 0 and b = -a/6c.  The f sign corresponds to kink and antikink solutions, 
respectively. As 6 varies from --CO to +oo, the kink and antikink solutions interpolate 
between 0 and 6 c / a  and between 6 c / a  and 0, respectively. These solutions resemble 
the kink and antikink solutions of A ~ $ ~ ( c p  - 1 ) 2  field theory (Dey 1985). 

The solutions of (2a) (static solutions) are given by 

( 1 1 )  u ( ~ ) = - { l * t a n h [ ( q / 8 ) ~ ’ ~ ~ / 2 ] }  37 
U 

for k,  = k, = 0 and b = -a /6q.  As in the above case the * sign corresponds to the 
kink and antikink solutions respectively. 

The kink and antikink (*sign) solution of ( 3 a )  are given by 

u(x ,  t )  = *(3c/b)’”tanh[(~/28)’’~([+ k 3 ) ]  (12 )  

for k,  =0,  k , = 3 c 2 / 4 b  and k,  a constant of integration. It can be noted that these 
solutions resemble the kink and antikink solutions of Ad4 field theory (Khare 1979). 

( 1 3 )  
for k, = k2 = 0 and b = -5a/48c. Out of these four solutions, the kink solutions are 
U = ( 6 ~ / u ) ” ~ { l  + t a n h [ ( ~ / 8 ) ” ~ , $ ] ) ” ~  and U = - ( 6 ~ / a ) ’ / ~ { l  - tanh[(~/8)”~[])’ /* ,  the 
remaining two are antikink solutions. These solutions resemble the kink and antikink 
solutions of Ad6 field theory (Khare 1979). 

Finally the kink and antikink solutions of ( 4 a )  are given by 

u(x ,  t )  = * ( 6 c / ~ ) ’ / ~ [ l  + t a n h ( ~ / 8 ) ” ~ [ ] ’ / ~  
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Now we write some conservation laws for these types of equations. A conservation 
law associated with a Kdv like equation is expressed by an equation of the form (Miura 
et al 1968) 

T , + X , = O  (14)  

where T the conserved density and - X ,  the flux of T, are functions of u ( x ,  t ) .  

T and X values which are given by 
Considering ( la) ,  we can immediately write down two conservation laws, the 

T ,  = U X I  = a u 2 ( f + f b u ) + 6 u , ,  ( 1 5 )  

T 2 =  u2  X2 =fau3+:abu4+  SUU, -48~:. (16)  

and 

Similarly, we can write down two conservation laws for ( 4 a ) ,  the T and X values for 
which are given by 

TI = U X I  = f a u 3 + i a b u 5 +  Suxx (17 )  

X2=$au4+dabu6+ SUU,, -tau',.  ( 1 8 )  

and 
T - 1  2 

2 - 2 u  

Other conservation laws for ( l a )  and ( 4 a )  are not obvious and we are currently trying 
to find some of them (if there are any). 

Equation (3a)  is a more interesting case, because as for the modified Kdv equation 
(Miura et al 1968) we can write many more conservation laws. The first four values 
of T and X are given below: 

(19 )  

(20 )  

(21 )  

x - 1  1 - 3bu3 - SU,, TI  = U 

T - 1  2 
2-2u  x 2 -1 - 4bu4- SUU,, +.tau: 

T3 = fbu'+tSu: 

and finally 

x 3 -1 - 6 b 2 U 6 -  ~ S U ' U , ,  + 3 bSu2u: - 3 8 2 ~ , ~ , , ,  + ~S'U',, 

T - L  ' - 6 6  2 U 6 + ~ ~ S U ~ U : + ~ S ~ U : ,  

X4=Qb3u8- b2SU5U,, - 10bS2U2U,U,,, + y b 2 S ~ 4 ~ : +  10bS2uu~u,, 

(22 )  

The Hamiltonian nature of these system of equations is not obvious and needs 
further critical examination. Presently we are looking into this problem. 

In conclusion we say that we have obtained exact domain wall (kink) solutions of 
Kdv like nonlinear partial differential equations with higher order nonlinearity. The 
solutions are compared with the standard kink solutions of A42n theories. The 
Lagrangian density of each of these equations is written down. We have also written 
down a few conservation laws for these systems of equations. The results are important 
because until now no domain wall solutions of Kdv like equations were known to exist. 

3 2  + 4 68' U: + 8 bS2 U U f, - 6 S 3  u,u,,,, + 3 6 U ,,,. 

The author would like to thank S N Behera, A Khare and S G Mishra for useful 
discussions and suggestions. 
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